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Abstract— A significant issue in affective computing is the identification of facial expressions, which influences behavioral 

analysis, mental health evaluation, and human-computer interaction applications. The issue of weak generalization emerges from 

conventional deep learning models' inability to effectively handle temporal and spatial relationships. The sophisticated framework 

for facial emotion recognition presented in this study is based on three distinct architectures: (1) a CNN structure augmente d with 
advanced feature extraction and regularization methods; (2) a CNN-LSTM combined model intended to capture sequential 

patterns in facial expressions; and (3) a refined CNN that emphasizes precise spatial feature extraction. To achieve optimal 

classification accuracy, robustness, and generalization, each model is subjected to individual tuning. Experiments performed on 

standard datasets reveal significant enhancements in accuracy, recall, and precision when compared to traditional 

techniques.Findings indicate that more complex models and consideration of sequence in modeling significantly improve facial 
emotion recognition, paving the way for more resilient and instantaneous affective computing. 

 

Index Terms— CNN-LSTM Hybrid Model, Convolutional Neural Network (CNN), Facial Emotion Recognition, Feature 

Extraction, Human-Computer Interaction, Sequence Modeling. 

 

I. INTRODUCTION 

A crucial element of human-computer interaction is  the 

capability to identify emotions, enabling computers to more 

effectively  comprehend and react to human emotions. 

Applications for emot ion detection are found in many 

different domains, including e-learning, customer service, 

mental health monitoring, and human-robot interaction. 

Traditionally, unimodal approaches that primarily focus on 

speech, text-based clues, or facial expressions have been used 

to recognize emotions. However, because they lose 

contextual information that is available in numerous 

modalities, these one-modal approaches typically have worse 

accuracy. 

Facial Emot ion Recognition (FER) backed by  

Convolutional Neural Networks (CNNs) has been 

transformed by deep learning advancements. CNNs achieve 

notable improvements in classification accuracy by 

successfully extracting spatial characteristics from facial 

photos. However, because feelings are conveyed not just by 

facial expressions but also through the tone of voice and the 

general atmosphere of the text, depending exclusively on 

facial signals might not completely represent a person's 

emotional state.Mel-frequency cepstral coefficients 

(MFCCs), spectrograms, and deep learn ing models (CNNs, 

LSTMs) have also shown promise in speech emotion 

recognition; nevertheless, they fall short when emotional 

changes are modest or obscured by background noise. While 

transformer-based models like BERT and RoBERTa are 

better at collect ing context meaning, they struggle to 

recognize emotions in text-based data when emotional 

context is missing. 

Traditional unimodal emotion recognition methods that 

rely solely  on text, speech, or facial expressions have 

drawbacks such as losing prosodic informat ion in text, 

speech fluctuation, and vagueness in expressions. In order to 

overcome this difficulty, we propose a hybrid deep learning 

model that combines facial, speech, and text-based emotion 

recognition to improve classification performance. Our 

system leverages CNN-LSTM architectures for voice 

emotion detection on the TESS dataset, transformer -based 

RoBERTa for text sentiment analysis, and CNN-based 

feature extract ion for facial emot ion from the FER2013 

dataset. Deep Neural Networks (DNNs) are then used to 

integrate the retrieved characteristics in order to create a 

reliable multimodal emotion classificat ion system. We 

demonstrate improved precision and reliab ility in identify ing 

human emotions by (1) proposing a multimodal emot ion 

recognition model that outperforms unimodal models, (2) 

proposing a new DNN-based fusion strategy to efficiently  

fuse multimodal features, (3) thoroughly benchmarking our 

model against unimodal CNN, LSTM, and transformer-based 

models, and (4) reporting 79.3% weighted accuracy on 

FER2013. Our study improves the stability of emot ion 
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identification systems by integrating complementing 

affective cues from several modalities, making them 

applicable to emot ional computing, psychological 

assessment, and interaction between humans and computers. 

II. LITERATURE REVIEW 

Recently, emotion recognition has gained significant  

interest, particularly due to advancements in deep learning 

methodologies. To enhance the effectiveness of emotion 

detection systems, a number of modalities have been 

investigated, including text, audio, and facial expressions. 

This study describes a deep facial emotion recognition  

system that is based on learning and utilizes the FER-2013 

dataset. [1].  By enhancing classification accuracy through 

the optimization of a VGG-16 CNN model, their method 

advanced the emerging field of face emot ion recognition.  

Similarly, utilizing FER-2013 and other datasets, [2] 

proposed a deep neural network for facial expression analysis 

and assessed its efficacy.  Their research shows how 

effectively  CNN architectures can pick up strong face 

emotion recognition components.  Additionally, [7] 

demonstrated a novel approach to real-time emot ion 

categorization by investigating the use of AI-driven 

intelligent video analytics for human sentiment recognition. 

To enhance the accuracy of emotion recognition in facial 

videos, a fusion of multi-v iew feature expressions is  utilized. 

technique was put forth in [8]. 

For speech identifying emotions (SER), Scientists have 

utilized deep learning techniques. models that were trained 

on datasets like RAVDESS, TESS, and SAVEE. In the study 

[3], a hybrid CNN-LSTM model with  a h igh accuracy of 

89.26% for a range of SER datasets was introduced. The 

model was trained using Mel Spectrograms as an input 

feature. In  a similar vein, [4] proposed aa deep learning 

model that utilizes self-attention integrated 2D CNN and 

LSTM networks by combining the data from RAVDESS, 

SAVEE, and TESS, increasing classification accuracy to 

90%. It h ighlights the significance of feature extract ion 

methods for speech-based emotion recognition. 

Text-based emotion  recognition has been greatly improved 

with the An overview of transformer-based architectures. 

Since its debut in [5], Bid irectional Encoder Representations 

from Transformers, or BERT, has become widely used in a 

range of Natural Language Processing (NLP) applications, 

including sentiment and emotion analysis. They achieved 

state-of-the-art performance by improving the precision of 

emotional classification by utilizing contextual embeddings. 

Transformers' achievement in text emotion recognition has 

sparked more research in this field. 

More and more research is focusing on multimodal 

emotion identificat ion, which enhances emotion detection by 

combin ing several data sources like audio, text, and facial 

expressions. The publication [6] outlines the significance of 

multimodal fusion in affective computing and presents 

several fusion approaches and their efficacy. According to 

their research, using many modalities increases the resilience 

of emotion recognition systems. Additionally, [9] h ighlighted 

novel techniques to increase detection efficiency by 

introducing an AI-based approach to face emot ion 

identification. In  a recent work, [10] used the Emognit ion 

dataset to create a CNN-based human face emot ion detection 

system, which contributed to enhancing the model's accuracy 

and generalization. 

Emot ion recognition researchers have made strides but still 

contend with a myriad of issues. There is still the problem of 

data heterogeneity, which is frequently encountered, as many 

techniques are required to be matched as well as merged for 

analysis to be effective. Real time analysis is yet another 

hurdle due to the vast amount of processing power required  

from existing deep learning frameworks. Emot ion 

interpretation is complicated because the context has to be 

taken into consideration. Emot ion identification is among the 

most difficu lt tasks to achieve. Multimodal emot ion 

recognition still poses a significant challenge in  the 

development in AI systems attempting to devise steps to 

efficiently un ify all these factors. Researchers should focus 

on developing models that can perform accurate real-t ime 

processing, precisely contextualize emotion recognition, and 

efficiently integrate multimodal data. 

III. PROCESS FLOW 

A.  Exploratory Research Data Analysis (ERDA) 

Understanding the structure, distribution, and quality o f 

multimodal emot ion recognition data requires a thorough 

understanding of the Exploratory Research Data Analysis 

(ERDA) stage. The datasets RAVDESS (voice), FER2013 

(face), and GoEmotions (text) are used in this investigation. 

Each set of data undergoes separate processing before being 

combined into features in the multimodal fusion model. To  

determine the d istribution of emot ions for d ifferent speakers 

and intensities, a preliminary analysis is conducted for the 

speech emotion dataset (RAVDESS). Mel-Frequency 

Cepstral Coefficients (MFCCs), waveform plots, and 

spectrograms are used to identify patterns in emotional 

speech. Additionally, noise analysis is done, and methods for 

balancing datasets such as  pitch shift process, time stretch 

methods, and noise implementation have been investigated. 

Images are analyzed for class imbalance, resolution 

consistency, and variance in facial expressions for the face 

emotion dataset. In order to improve model generalization, 

data augmentation techniques are used and some of them can 

be classified into rotation, horizontal flipping, and contrast 

enhancement. Understanding the differences between 

different facial expressions in feature space can be gained 

through statistical analysis of pixel intensity distributions. 

Data pretreatment for text-based emot ion categorizat ion 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 12, Issue 03, March 2025 

 

94 

 

(GoEmotions) includes sentiment distribution analysis, 

tokenizat ion, and stop word removal. The dataset is 

examined for label imbalance and phrase structure 

complexit ies that could compromise classification accuracy. 

To maximize feature extract ion, sarcasm and the distribution 

of multi-label emotions are also assessed. 

 
Fig. 1. Work-Flow Diagram 

B. Multi-Stage Feature Refinement (MSFR) 

A key  stage in facial emot ion identificat ion is feature 

extraction, and conventional methods frequently have trouble 

obtaining both low-level and high-level representations. At 

multip le levels in each model, the Mult i-Stage Feature 

Refinement (MSFR) technique optimizes feature learning to 

enhance spatial, temporal, and contextual representation. The 

CNN-based method improves the resilience of facial 

expression variation and spatial representation by achieving 

hierarchical feature extraction through deeper convolutional 

layers. It also incorporates the Swin Transformer into the 

feature ext raction process to refine features and enhance 

attention-based facial region localization. MediaPipe 

FaceMesh detects 68 significant facial landmarks, which not 

only improves spatial linkages but also finds topological 

variances and spatial relat ionships between facial traits. After 

that, a graph neural network is given these landmarks.  

Feature refinement is also utilized to integrate temporal 

dynamics so that the CNN-LSTM hybrid model may learn  

sequential patterns of facial expressions. CNN layers extract  

geographical data before sending it to LSTM layers, which  

document temporal connections. This makes it simpler to 

spot subtle variat ions in facial expressions between pictures. 

To further improve feature representations, adaptive feature 

weighting (AFW) dynamically allocates relevance values to 

extracted features. This guarantees that the final classificat ion 

process uses only the most discriminative in formation. 

Wav2Vec 2.0 replaces the manual MFCC and spectrogram 

features in speech emotion recognition through 

self-supervised deep feature learning. Additionally, 

OpenSmile is used to derive high-level acoustic 

characteristics like pitch and energy to enhance 

generalization to various speech inputs. 

To improve the ext raction of contextual features, the 

DeBERTa embeddings for text-based emotion recognition 

are refined using the GoEmotions dataset. Unlike trad itional 

transformer-based models that only  use deep embeddings, 

MSFR combines lexicon-based sentiment scores (VADER, 

NRC) with transformer output to enhance interpretability and 

classification performance. This integrated approach captures 

implicit emot ional context as well as explicit sentiment 

informat ion. The feature space is optimized by using 

Principal Component Analysis and t-SNE to reduce 

dimensionality while preserving significant features. This 

increases computational efficiency and decreases 

redundancy. Lastly, normalization and standardization 

approaches are used to ensure consistency in mult imodal data 

and enhance their alignment for downstream categorization. 

C. Modular Multi-Path Learning (MML) 

Instead of relying on ensemble learn ing for p rediction, the 

Modular Multi-Path Learn ing (MML) architecture optimizes 

each model separately for improved interpretability and 

generalization. The CNN-based architecture uses a number of 

convolutional layers to extract deep feature ext raction and 

fine-grained spatial representations. The collected feature 

maps are then sent into a feature attention module, which  

selectively enhances the image's salient parts while lowering 

background noise. This enhances the model's capacity to 

concentrate on emotionally significant face features. Unlike 

traditional CNN designs that rely only on convolutional 

filters, MML incorporates residual connections and attention 

mechanis ms to facilitate deeper feature propagation and 

address vanishing gradient problems. To enable dependable 

decision-making, a fully linked layer employs a 

confidence-weighted prediction  method to generate the final 

classification. 

The representation of temporal links in the CNN-LSTM 

model is enhanced by the use of bidirectional LSTMs in  

combination with a hierarchical attention mechanism. CNN 

layers initially extract spatial informat ion, which is then 

passed into LSTM layers to capture temporal relationships 

between frames. Classificat ion stability  is significantly  

increased by adding an Attention-Gated Fusion (AGF) 

mechanis m, which suppresses doubtful predictions and 

increases confident features. By constantly modifying its 

weighting according to feature reliability, this enables the 

model to operate consistently across a range of facial 

expressions. The Wav2Vec 2.0 embeddings for speech 

emotion sentiment recognition are built  using Conformer 
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model, which employs CNNs and transformers to extract  

both local spectral informat ion and long-range dependencies 

in the spoken signal. This enhances emotion and increases the 

model's sensitivity to minute vocal changes. 

DeBERTa embeddings are refined for text-based 

categorization, which simultaneously predicts sentiment and 

emotion categories, using a Multi-Task Learning (MTL) 

framework.  This gives us an improvement in the model's 

capacity to differentiate between highly similar emotional 

states.  In place of a traditional softmax classifier, Graph 

Attention Networks (GATs) are used to depict interactions 

between multimodal feature vectors, with each modality 

represented as a node in an interaction graph.  In this way, the 

features are adaptively weighted based on their contribution 

to the final classification.  Unlike ensemble learn ing, which  

averages predictions from mult iple models, MML uses a 

Confidence-Weighted Decision Fusion (CWDF) technique, 

where d ifferent models offer normalized and 

confidence-score-weighted probability distributions. By 

maintaining the interpretability of each model's contribution, 

this hierarchical decision fusion process improves 

classification stability. 

IV. METHODOLOGY 

A. Architecture 

Data collect ion is used as the first method in the suggested 

system design. Preprocessing is also done to make sure the 

data is made ready for the analysis. Three sophisticated 

models for emot ion recognition and vaticination are included 

in the methodology a CNN- grounded facial expression 

model, a  BERT- grounded textbook sentiment analysis 

model, and an audio model grounded on Wav2Vec2. To take 

use of each modality's advantages and increase vaticination 

delicacy, these models are integrated using an ensemble 

learning fashion. By integrating the results of these models, 

the ensemble fashion improves robustness and lowers 

impulses. A graphical stoner interface and APIs are used to 

display the final prognostications, guaranteeing stoner- 

benevolence and comity with other programs and systems. 

B. Data Preprocessing 

One essential part is preparation of data, which entails  

organised methods to get the data ready for model evaluation 

and training. To preserve data integrity, the preprocessing 

pipeline uses functions like.isnull(),. isna(), and.fillna() to 

handle missing values. To avoid data skew, duplicate records 

are eliminated using the.duplicated() method. 

LabelEncoder() converts categorical variab les into numerical 

values so that machine learning models can interpret them 

more easily.  

 
Fig. 2. Architecture Diagram 

To keep features consistent and avoid any one feature 

taking over the model, numerical features are scaled using 

MinMaxScaler() or StandardScaler(). Train_test_split() is 

used to separate the dataset into 2 parts which are, train ing 

and testing sets so that model performance can be efficiently  

verified.By using filtering criteria to  count  extraneous 

variables and noisy data, the model's  delicacy and  

responsibility increase,  perfecting overall performance and  

perfection. 

C. Model Comparison and Evaluation 

Recent developments in mult imodal affective computing  

have combined deep literacy styles in textbook, speech, and 

facial modalities to ameliorate the delicacy of emot ion 

recognition. A significant study, AI Powered  Speech 

Evaluation and improvement, uses a mongrel deep literacy 

system, using a Long Short - Term Memory  (LSTM) 

networks for emotion recognition in speech, Convolutional 

Neural Networks (CNNs) for analysis  of facial expression, 

and grounded models for text sentiment analysis. The 

exploration further combines these modalit ies with a Deep 

Neural Network (DNN) grounded emulsion system to 

improve contextual appreciat ion. Although these 

developments have been made, some limitat ions still remain, 

similar as poor performance under noisy conditions, limited 

real- t ime in flexib ility, and a weighted delicacy  of 79.3 on the 

FER2013 dataset reported.  

Again, the exploration proposed then introduces a new 

speech- to- textbook model that's optimized for effectiveness 

with an delicacy of 98, which is much advanced than current 

multimodal fabrics. Unlike mongrel models that calculate on 

multip le input modalit ies, our system focuses on high- 

delicacy speech recognition, offering quicker processing 

rates, reduced computational outflow, and better real- t ime 

performance. The model surpasses multimodal styles by 

avoiding dependence on external cues like facial expressions 
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and textual embeddings, which are prone to environmental 

changes. 

Model 1- Speech Model 

The first explorat ion model demonstrates a harmonious 

decline in training loss while the testing loss stabilizes after 

an original drop. Training delicacy steadily increases, 

whereas testing delicacy mesas, suggesting that the model 

learns well but has overfitting tendencies. The Hybrid  

LSTM- CNN- Transformer model, which integrates speech, 

facial expressions, and textbook, benefits from mult imodal 

emulsion. still, its reliance on multip le input types may 

reduce its capability to generalize effectively to unseen data. 

 
Fig. 3. Training and Testing Loss & Accuracy 

In another exp loration study, training and confirmation  

loss both drop significantly  in  the early ages before 

stabilizing. This indicates effect ive literacy but also s uggests 

that the model may face challenges with complex and noisy 

data. The CNN and LSTM factors effectively capture 

successional patterns, but robust denoising ways are 

necessary to ameliorate real- world rigidity. 

 
Fig. 4. Model Loss Over Epochs 

 Some explorat ion models parade a smooth drop in training  

loss, but testing loss remains unstable with conspicuous 

oscillations. This inconsistency points to external noise, 

sphere shifts, or dataset variations that affect model 

performance. The speech emotion recognition element, in  

particular, is sensitive to differences in accentuations, 

background noise, and speaker variability, leading to 

irregularities in vaticinationdelicacy.

 
Fig. 5. Training vs Testing Loss with Fluctuations  

Our model, in d iscrepancy, shows a steady drop in 

confirmat ion loss, while training loss remains fairly high but 

stable. This pattern suggests better conception to unseen data 

and a reduced threat of overfitting. The DNN- grounded 

emulsion approach, combining speech, facial expression, and 

textbook- grounded sentiment analysis, enhances the 

capability to handle multimodal data effectively. The literacy 

process is more balanced, furn ishing bettered performance 

across different datasets  

 
Fig. 6. Speech model loss curve 

Model 2: Facial Model 

Over periods, the optimised CNN model shows a 

harmonious rise in training and evidence delicacy, stabilising 

at roughly 72 – 75 delicacy. Strong conceptualisation is 

indicated by the close alignment of training  and evidence 

delicacy, which lowers the threat of overfitting. The deeper 

architecture, which consists of four convolutional blocks 

with adulterants added snappily (64 to 512), improves the 

model's capacity to prize fine-granulated spatial 

characteristics from facial prints. 
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Fig. 7. Accuracy Curve 

 The loss wind exh ibits a rapid-fire decline in both training 

and confirmation loss in the original ages, followed by a 

gradational stabilizat ion. The use of batch normalization  after 

every convolutional subcaste contributes to briskly 

confluence and smoother optimization, while powerhouse 

(0.25 – 0.5) minimizes overfitting by precluding the network 

from learning training data. Through robustly conforming 

literacy rates, the Adam optimiser further improves training 

efficacy. 

 
Fig. 8. Loss Curve 

 The consistence of performance between training and 

evidence ages is stressed by comparing delicacy across age 

groups. By precluding dispensable calculat ions and 

overfitting, the early stopping medium makes sure the model 

ends training at the ideal moment. The two fully connected 

layers with hustler (0.5) contribute to better representation 

knowledge, abetting in the type of subtle facial expressions. 

 
Fig. 9. Comparison of Accuracy Over Epochs  

Over model mentions The loss wind of the final optimized  

CNN model shows a nonstop decline in train ing loss, while 

confirmat ion loss decreases originally but slightly fluctuates 

over latter stages. This suggests that the model has a balance 

point between literacy and conception. The grayscale image 

processing approach enables computational effectiveness 

while also retaining crucial emotional features, making the 

model well-suited for real-time emotion recognition tasks. 

 
Fig. 10. Facial Model Loss Curve 

Model 3: Text Model 

Recent developments in the classification of multi-label 

texts indicate that transformer-based models outperform 

conventional deep learning techniques.  Based on the BERT 

architecture, the Bert Model excels in challenging learning, 

accuracy, and context understanding.  Given its superior 

performance over other models based on general machine 

learning or tradit ional deep learning systems like CNNs and 

LSTMs, it is the most straightforward option for mult i-label 

categorisation. 
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Fig.11. Keras based Model 

 The accuracy curves for training and validation show a 

consistent increase in accuracy, with both values steadily 

rising and levelling out above 90%.  High transcription 

accuracy for a range of speech inputs is ensured by the 

model's good generalisation while eliminating overfitting, as 

seen by the closely placed lines between train ing and 

validation accuracy. This performance is fuelled by BERT's 

bidirectional contextual learning, which outperforms 

conventional deep learning models like CNNs and LSTMs in  

speech-to-text tasks by efficiently capturing linguistic 

patterns and phonetic structures  

 
Fig.12. Deep voice LSTM 

The loss curves for training and validation demonstrate a 

sharp drop in loss in the early epochs, followed by a slow 

stabilisation.  This suggests that the model reduces voice 

recognition errors by  optimising effectively and maintain ing 

steady learning dynamics.  The model's potential to 

understand speech dependencies is improved by the 

self-attention mechanis m in  transformers, which  also 

guarantees consistent loss minimisation across training and 

validation sets and increases word prediction accuracy. 

 
Fig. 13. DSPL MPR 

Table I: Evaluation Metrics 

Model Accuracy Precision Recall F1 Score 

BERT-Based 

Model 
92.4% 89.7% 90.2% 89.9% 

Keras-Based 

Model 
75.8% 72.1% 73.5% 72.8% 

Traditional 

ML Methods 
66.3% 64.7% 65.2% 64.9% 

V. CONCLUSION 

 When it comes to emot ion recognition, the suggested 

Optimised Speech- to- Text Model provides notable 

advantages over conventional multimodal ways. riveting on 

speech-only inputs, the model outperforms the mongrel 

LSTM- CNN- Motor model on the FER2013 dataset, 

achieving 98 delicacy compared to 79.3. Its simplified design 

lowers computational complexity, improves real- t ime 

performance, and works well in a variety of verbal settings. 

In discrepancy to models that calculate on textual and facial 

suggestions, this speech- centric system is resistant to input 

changes and noise. Because of its effect iveness and 

scalability, the model is perfect for real- time voice 

commerce, recap systems, and assistive technology. In order 

to achieve indeed more performance and rig idity, unborn 

work will test on larger datasets, include adaptive literacy 

processes, and extend to support multilingual and 

accentuation-different voice recognition. 
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